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Applications of Cartan’s equivalence method to symmetries of differential equations are
considered. The examples include interrelations between the nonlinear acoustics equations,
and the solutions of equivalence problems for the classes of linear parabolic equations and
nonlinear wave equations.

Introduction

In this work we consider applications of Élie Cartan’s structure theory of Lie pseudo-groups to
symmetry groups of differential equations. This approach allows to solve equivalence problems
for classes of differential equations and to find contact transformations mapping equivalent equa-
tions into each other. Also, it allows to obtain all differential invariants of symmetry groups for
differential equations without analysis of over-determined systems of partial differential equa-
tions.

Definition 1. [20, 13] A pseudo-group G on a manifold M is a collection of local diffeomor-
phisms of M , which is closed under composition when defined, contains an identity and is closed
under inverse. A Lie pseudo-group is a pseudo-group whose diffeomorphisms are local analytic
solutions of an involutive system of partial differential equations.

Example 1. The pseudo-group of conformal transformations in R2 consists of local mappings
(x, y) 7→ (X,Y ) satisfying the Cauchy - Riemann equations Xx = Yy, Xy = −Yx.

É. Cartan developed an approach to study Lie pseudo-groups by means of exterior differential
forms. He showed that for every Lie pseudo-group G acting on a manifold M there exists a finite-
dimensional Lie group H and a set of 1-forms Ω = {ω1, ..., ωs} on a direct product M ×H such
that a transformation ∆ : M → M belongs to G if and only if the forms Ω are invariant under
a lift ∆̂ : M ×H →M ×H. The forms Ω are called a moving coframe or tautological forms for
the pseudo-group G.

Example 1 (continued). For the pseudo-group of conformal transformations in R2 we can take
the moving coframe ω1 = a dx − b dy, ω2 = b dx + a dy on R2 ×H, where H is a Lie group of

non-degenerate matrices of the form
(
a −b
b a

)
.

Taking differentials of the tautological forms, we obtain Cartan’s structure equations for the
pseudo-group

dωi = Ai
αk η

α ∧ ωk + T i
jk ω

j ∧ ωk,

where Ai
αk, as usual, are constants, the torsion coefficients T i

jk are invariants of the pseudo-
group, and ηα are linear combinations of Maurer-Cartan forms for the group H and the forms
Ω. Cartan gave an explicit, practical test for involutivity of moving coframes. The test deals
with ranks of matrices constructed from Ai

αk. For non-involutive coframes Cartan’s prolongation
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procedure allows us to obtain an involutive coframe after a finite number of extensions of the
group H.

Example 1 (continued). The structure equations for the pseudo-group of conformal transfor-
mations are dω1 = π1 ∧ ω1 − π2 ∧ ω2, dω2 = π2 ∧ ω1 + π1 ∧ ω2, where π1 = (a da + b db) (a2 +
b2)−1 + t1 ω

1 + t2 ω
2, π2 = (−b da + a db) (a2 + b2)−1 − t2 ω

1 + t1 ω
2, while t1 and t2 are free

parameters.

Full details of Cartan’s method can be found in [1, 2, 3, 17].

1 Contact transformations

Using Cartan’s method, we can find a moving coframe for the pseudo-group Cont(J1(E)) of
contact transformations on a bundle J1(E) of first-order jets of sections of E = Rn ×Rm → Rn.
In the local coordinates (xi, uα, pα

i ), i ∈ {1, ..., n}, α ∈ {1, ...,m}, a contact transformation
∆ : J1(E) → J1(E), ∆ : (xi, uα, pα

i ) 7→ (xi, uα, pα
i ), is defined by the requirement to map

the contact forms ϑα = duα − pα
i dx

i into linear combinations of the contact forms: ∆∗ϑ
α =

duα − pα
i dx

i = ζα
β (x, u, p)ϑβ for appropriate functions ζα

β on J1(E).
As it is shown in [14], we can take the following moving coframe for Cont(J1(E)):

Θα = aα
β (duβ − pβ

j dx
j), Ξi = ciβ Θβ + bij dx

j , Σα
i = fα

iβ Θβ + gα
ij Ξj + aα

β B
j
i dp

β
j . (1)

These forms are defined on J1(E) × H, where H is the Lie group of block lower triangular
matrices aα

β 0 0
ciγ a

γ
β bij 0

(fα
iγ + gα

ik c
k
γ) aγ

β gα
ik b

k
j aα

β B
j
i

 ,

and the parameters aα
β , bij , c

i
β , fα

iβ, and gα
ij obey the requirements det

(
aα

β

)
6= 0, det

(
bij

)
6= 0,

bik B
k
j = δi

j , and gα
ij = gα

ji. It is easy to verify directly that ∆ is a contact transformation
whenever (1) is invariant under an action of a lift of ∆ on J1(E)×H. The structure equations
for the lifted coframe (1) have the form

dΘα = Φα
β ∧Θβ + Ξk ∧ Σα

k , dΞi = Ψi
k ∧ Ξk + Πi

γ ∧Θγ , (2)

dΣα
i = Φα

γ ∧ Σγ
i −Ψk

i ∧ Σα
k + Λα

iβ ∧Θβ + Υα
ij ∧ Ξj ,

where Φα
β , Ψi

k, Πi
γ , Λα

iβ, and Υα
ij are appropriate 1-forms on J1(E)×H. From these equations it

follows that the moving coframe (1) is involutive. The structure equations (2) remain unchanged
if we make the following change of the forms Φα

β , Ψi
k, Πi

γ , Λα
iβ, and Υα

ij :

Φα
β 7→ Φα

β +Kα
βγ Θγ , Ψi

k 7→ Ψi
k + Li

kj Ξj +M i
kγ Θγ , Πi

γ 7→ Πi
γ +M i

kγ Ξk +N i
γε Θε, (3)

Λα
iβ 7→ Λα

iβ + Pα
iβγ Θγ +Qα

iβk Ξk +Kα
γβ Σγ

i −Mk
iβ Σα

k ,

Υα
ij 7→ Υα

ij +Qα
iβj Θβ +Rα

ijk Ξk − Lk
ij Σα

k ,

where Kα
βγ , Li

kj , M
i
kγ , N i

γε, P
α
iβγ , Qα

iβk, and Rα
ijk are arbitrary functions on J1(E)×H satisfying

the symmetry conditions Kα
βγ = Kα

βγ , Li
kj = Li

jk, N
i
γε = N i

εγ , Pα
iβγ = Pα

iγβ, Qα
iβk = Qα

kβi,
Rα

ijk = Rα
ikj = Rα

jik.
Another approach to construct 1-forms characterizing contact transformations is presented

in [18].
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2 Symmetries of differential equations

Symmetry groups of differential equations are sub-groups of pseudo-groups of contact transfor-
mations. Therefore Cartan’s method of equivalence is applicable to find tautological forms for
these symmetry groups. We briefly outline this approach, [4, 14].

Every partial differential equation (PDE) can be transformed into an equivalent PDE of the
first order by adding appropriate new variables, [20, th 3.3.1], [6, § 17.4]. Therefore we take a
PDE R of the first order. R is a sub-bundle in J1(E). Let Sym(R) be the group of contact
symmetries for R. It consists of all the contact transformations on J1(E) mapping R to itself.
Let ι : R → J1(E) be an embedding. The tautological forms of Sym(R) are restrictions of the
lifted coframe (1) on R: θα = ι∗Θα, ξi = ι∗Ξi, and σα

i = ι∗Σα
i (for brevity we identify the map

ι × id : R×H → J1(E) ×H with ι : R → J1(E)). The forms θα, ξi, and σα
i have some linear

dependencies, i.e., there exists a non-trivial set of functions Sα, Ti, and U i
α on R×H such that

Sα θ
α + Ti ξ

i + U i
α σ

α
i ≡ 0. These functions are lifted invariants of Sym(R). Setting them equal

to appropriate constants allows us to specify some parameters aα
β , bij , c

i
β , fα

iβ, and gα
ij of the

group H as functions of the coordinates on R and the other group parameters.
After these normalizations, some restrictions of the forms φα

β = ι∗Φα
β , ψi

k = ι∗Ψi
k, and

πi
β = ι∗Πi

β, or some their linear combinations, become semi-basic, i.e., they do not include
the differentials of the parameters of H. From (3), we have the following statements: (i) if φα

β is
semi-basic, then its coefficients at σγ

j and ξj are lifted invariants of Sym(R); (ii) if ψi
k or πi

β are
semi-basic, then their coefficients at σγ

j are lifted invariants of Sym(R). Setting these invariants
equal to some constants, we get specifications of some more parameters of H as functions of the
coordinates on R and the other group parameters.

More lifted invariants can appear as essential torsion coefficients in the reduced structure
equations

dθα = φα
β ∧ θβ + ξk ∧ σα

k , dξi = ψi
k ∧ ξk + πi

γ ∧ θγ ,

dσα
i = φα

γ ∧ σ
γ
i − ψk

i ∧ σα
k + λα

iβ ∧ θβ + υα
ij ∧ ξj .

After normalizing these invariants and repeating the process, two outputs are possible. In the
first case, the reduced lifted coframe appears to be involutive. Then this coframe is the desired
set of tautological forms for Sym(R). In the second case, when the reduced lifted coframe does
not satisfy Cartan’s test, we should use the procedure of prolongation, [17, ch 12].

Another approach to find structure equations, but not tautological forms, for symmetry
groups of PDEs is given in [12, 13].

3 Interrelations between the Khokhlov-Zabolotskaya equation
and the short wave gas dynamics equation

Consider two equations: the Khokhlov - Zabolotskaya equation, [23, ch 3, § 5.3], [21], in the
potential form

vx = uy, vy = ut + uux, (4)

and the short wave gas dynamics equation, [6, § 23.4], [5],

vx = uy, vy = ut + (u+ x)ux + k u. (5)

The moving coframe method gives the following structure equations for the symmetry pseudo-
group of (4):
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dθ1 = η1 ∧ θ1 + ξ1 ∧ σ1
1 + ξ2 ∧ σ1

2 + ξ3 ∧ σ1
3,

dθ2 =
3
2
η1 ∧ θ1 + η3 ∧ θ1 + ξ1 ∧ σ2

1 + ξ2 ∧ σ1
3 + ξ3 ∧ σ1

1 + ξ3 ∧ σ1
2,

dξ1 = η2 ∧ ξ1,
dξ2 = −η1 ∧ ξ1 + η1 ∧ ξ2 + η2 ∧ ξ2 − η3 ∧ ξ3 − θ1 ∧ ξ1,

dξ3 =
1
2
η1 ∧ ξ3 + η2 ∧ ξ3 − 2 η3 ∧ ξ1,

dσ1
1 = η1 ∧

(
σ1

1 + σ1
2

)
− η2 ∧ σ1

1 + 2 η3 ∧ σ1
3 + η4 ∧ ξ3 + η5 ∧ ξ2 + η6 ∧ ξ1 − θ1 ∧ σ1

2,

dσ1
2 = −η2 ∧ σ1

2 + η5 ∧ ξ1,

dσ1
3 =

1
2
η1 ∧ σ1

3 − η2 ∧ σ1
3 + η3 ∧ σ1

2 + η4 ∧ ξ1 + η5 ∧ ξ3,

dσ2
1 = η1 ∧

(
σ1

3 +
1
2
σ2

1

)
− η2 ∧ σ2

1 + η3 ∧
(
3σ1

1 + 2σ1
2

)
+ η4 ∧ ξ2 + η5 ∧ ξ3 + η6 ∧ ξ3

+η7 ∧ ξ1 − 3 θ2 ∧ σ1
2,

dη1 = 2 ξ1 ∧ σ1
2,

dη2 = −3 ξ1 ∧ σ1
2, (6)

dη3 =
1
2
η1 ∧ η3 + ξ1 ∧ σ1

3 + ξ3 ∧ σ1
2,

dη4 = π1 ∧ ξ1 + π2 ∧ ξ3 +
1
2
η1 ∧ η4 − 2 η2 ∧ η4 + 3 η3 ∧ η5 − 3σ1

2 ∧ σ1
3,

dη5 = π2 ∧ ξ1 − 2 η2 ∧ η5,

dη6 = π1 ∧ ξ3 + π2 ∧ ξ2 + π3 ∧ ξ1 + 2 η1 ∧ η5 + η1 ∧ η6 − 2 η2 ∧ η6 + 4 η3 ∧ η4

+6σ1
1 ∧ σ1

2,

dη7 = π1 ∧ ξ2 + π2 ∧ ξ3 + π3 ∧ ξ3 + π4 ∧ ξ1 + 2 η1 ∧ η4 +
3
2
η1 ∧ η7 − 2 η2 ∧ η7 + 4 η3 ∧ η5

+5 η3 ∧ η6 − η4 ∧ θ1 + 3 η5 ∧ θ2 + 3σ1
1 ∧ σ1

3 − 9σ1
2 ∧ σ2

1.

The structure of symmetry pseudo-group of the equation (5) depends on the value of the
parameter k. Particularly, if k = −2 or k = −1

2 , the pseudo-group has exactly the same
structure equations (6) but with different 1-forms θ1, θ2, ξ1, ξ2, ξ3, σ1

1, σ
1
2, σ

1
3, σ

2
1, η1, ... , η7,

π1, ... , π4. Therefore, in the cases k = −2 or k = −1
2 there exist transformations mapping

equation (5) into equation (4).
For the other values of k the structure equations for the symmetry pseudo-group of equation

(5) have the form

dθ1 = η1 ∧ θ1 + ξ1 ∧ σ1
1 + ξ2 ∧ σ1

2 + ξ3 ∧ σ1
3,

dθ2 =
3
2
η1 ∧ θ1 + η2 ∧ θ1 + ξ1 ∧ σ2

1 + ξ2 ∧ σ1
3 + ξ3 ∧ σ1

1 + ξ3 ∧ σ1
2,

dξ1 = 0,

dξ2 = η1 ∧
(
ξ2 − ξ1

)
− η2 ∧ ξ3 − θ1 ∧ ξ1 + E ξ1 ∧ ξ2,

dξ3 =
1
2
η1 ∧ ξ3 − 2 η2 ∧ ξ1 + E ξ1 ∧ ξ3,

dσ1
1 = η1 ∧

(
σ1

1 + σ1
2

)
+ 2 η2 ∧ σ1

3 + η3 ∧ ξ3 + η4 ∧ ξ1 − θ1 ∧ σ1
2 + E ξ2 ∧ σ1

2,

dσ1
2 = 0,
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dσ1
3 =

1
2
η1 ∧ σ1

3 + η2 ∧ σ1
2 + η3 ∧ ξ1 − E ξ1 ∧ σ1

3 + E ξ3 ∧ σ1
2,

dσ2
1 = η1 ∧ σ1

3 +
3
2
η1 ∧ σ2

1 + 3 η2 ∧ σ1
1 + 2 η2 ∧ σ1

2 + η3 ∧ ξ2 + η4 ∧ ξ3 + η5 ∧ ξ1

+
1
9
θ1 ∧ ξ3 − 3 θ2 ∧ σ1

2 + E ξ3 ∧
(
σ1

1 + σ1
2

)
,

dη1 = 2 ξ1 ∧ σ1
2,

dη2 =
1
2
η1 ∧ η2 −

1
9
ξ1 ∧ ξ3 + ξ1 ∧ σ1

3 + ξ3 ∧ σ1
2,

dη3 = π1 ∧ ξ1 +
1
2
η1 ∧ η3 − 3E η2 ∧ σ1

2 +
(

1
9
− 2E2

)
ξ3 ∧ σ1

2 − 3σ1
2 ∧ σ1

3,

dη4 = π1 ∧ ξ3 + π2 ∧ ξ1 + η1 ∧ η4 − E η1 ∧ σ1
2 + 4 η2 ∧ η3 + 2E η2 ∧ σ1

3 − E η3 ∧ ξ3

−E θ1 ∧ σ1
2 − E2 ξ2 ∧ σ1

2 +
2
9
ξ3 ∧ σ1

3 + 3σ1
1 ∧ σ1

2

dη5 = π1 ∧ ξ2 + π2 ∧ ξ3 + π3 ∧ ξ1 + 2 η1 ∧ η3 +
3
2
η1 ∧ η5 + E η1 ∧ σ1

3 + 5 η2 ∧ η4

+
2
9
η2 ∧ θ1 − 2E η2 ∧

(
σ1

1 + σ1
2

)
− η3 ∧ θ1 − E η3 ∧ ξ2 − 2E η4 ∧ ξ3 −

1
9
E θ1 ∧ ξ3

+
(

4
9
− E2

)
ξ3 ∧ σ1

1 +
(

2
9
− E2

)
ξ3 ∧ σ1

2 + 3σ1
1 ∧ σ1

3 − 6σ1
2 ∧ σ2

1,

where E = 1
3 (9ux+4 k+5) (2 k2+5 k+2)−1/2. This function is an invariant of the pseudo-group.

Since dE = 3σ1
2, it follows that all the derived invariants are constants, and the classifying

manifold of the pseudo-group, i.e., the manifold parameterized by differential invariants, is a
line. Thus for every two equations (5) such that (k + 2) (k + 2−1) 6= 0 the classifying manifolds
of their symmetry pseudo-groups (locally) overlap. So these equations are equivalent under a
contact transformation, [17, th 15.12]. For example, we can take k = 0 for one of the equations.

The knowledge of invariant 1-forms defining the symmetry pseudo-groups allows us to find
the transformations explicitly.

Theorem 1. If k = −2, then the transformation

t̃ = t, x̃ = exp
(

4
3
t

) (
x+

1
6
y2

)
, ỹ = exp

(
2
3
t

)
y,

ũ = exp
(

4
3
t

) (
u+

1
3
x− 1

18
y2

)
, ṽ = e2 t

(
v − 1

3
y u− 2

9
x y +

2
81
y3

)
maps equation (4) into equation (5) written in the tilded variables. In the case k = −1

2 the
transformation between (4) and (5) has the form

t̃ = t, x̃ = exp
(

2
3
t

) (
x+

1
12
y2

)
, ỹ = exp

(
1
3
t

)
y,

ũ = exp
(

2
3
t

) (
u− 1

3
x− 1

18
y2

)
, ṽ = et

(
v − 1

6
y u− 1

18
x y +

1
324

y3

)
.

The transformation

t̃ =
(3λ+ 1) (3λ+ 2)

2 (2λ+ 1)
t, x̃ =

(2λ+ 1) e2λt

2 (3λ+ 1)(3λ+ 2)
(4x+ λ2 y), ỹ = eλt y,

ũ =
(2λ+ 1) e2λt

2(3λ+ 1)2(3λ+ 2)2
(
8(2λ+ 1)u− λ(λ+ 1)(4x− (5λ+ 2)y2)

)
,

ṽ =
(2λ+ 1)2e3λt

(3λ+ 1)3(3λ+ 2)2
(
24v − 12λ(2λ+ 1)(u+ (λ+ 1)x)− λ2(λ+ 1)(5λ+ 2)y3

)
,
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where λ = 2
9

(
((k + 2)(k + 2−1))1/2 + k − 1

)
, maps equation (5) with k 6∈ {−2,−2−1} into this

equation with k = 0 (written in tilded variables).

4 Equivalence of linear parabolic equations

The similar but more complicate analysis gives the solution of the contact equivalence problem
for the class of linear parabolic equations (LPEs), [11, V. 3, p. 492-523],[19],

uxx = T (t, x)ut +X(t, x)ux + U(t, x)u. (7)

All these equations have infinite-dimensional symmetry pseudo-groups, whose structure depends
on the coefficients of equations. For simplicity of notation we consider the following normal form
uxx = ut +H(t, x)u, while the results are valid for the original equations as well. The solution
of the equivalence problem in terms of the coefficients of equations (7) is given in [15].

Define the functions

I = −(Hxxx)1/5, J1 = −2
5
Hxxxx (Hxxx)−6/5,

J2 =
1
2

(
2 I (J1,x J1,tx − J1,t J1,xx)− 2 It J2

1,x + I2 J1 J1,t J1,x

)
I−3 J−1

1,x ,

J3 = −1
8

(
I4J2

1J
2
1,t − 4IIttJ2

1,x − 8I2J2
1,xHxx + 2I3J1,xJ

2
1,t + 8I2

t J
2
1,x − 2I3J1J1,tJ1,tx

−2I2J1ItJ1,tJ1,x + 2I3J1J1,xJ1,tt − 2I5J1J2J1,tJ1,x

)
I−6 J−2

1,x ,

J4 =
(
2IIttJ1,x − 4I6J3J1,x + 4I2J1,xHxx − I3J1,t + 2I3J1J1,xHx − 4I2

t J1,x

)
I−6 J−1

1 J−1
1,x ,

L0 =
(
2I2Hxx + I3J1Hx + IItt − 2I2

t

)
I−2J−1

1,t , L1 = (L0,x − It) I−3,

L2 =
1
2

(
2IL0,t + IJ1L

2
0 + 4I2Hx − 2I3L0L1 − 4L0It

)
I−5,

M0 = −2M1,t (3J1M1 + 2)−2 , M1 =
1
2

(
IItt + 2IHxx + I3J1Hx − 2I2

t

)
I−6,

M2 = (M0,x − It) I−3, M3 =
1
8

(
2IM0,t − 2I3M0M2 − 4M0It + IJ1M

2
0 + 4I2Hx

)
I−5.

Then we have

Theorem 2. The class of LPEs is divided into the five subclasses P1, P2, ..., P5 invariant
under an action of the pseudo-group of contact transformations:
P1 consists of all LPEs such that I = 0;
P2 consists of all LPES such that I 6= 0 and J1x 6= 0;
P3 consists of all LPEs such that I 6= 0, J1x = 0, and J1t 6= 0;
P4 consists of all LPEs such that I 6= 0, J1 = m = const, and 3mM1 6= −2;
P5 consists of all LPEs such that I 6= 0, J1 = m = const, and 3mM1 = −2.
Every equation from the subclass P1 is equivalent to the linear heat equation uxx = ut.
Two equations from P2 are locally equivalent to each other if and only if they have the same

functional dependencies among the differential invariants J1, J2, J3, J4, and their invariant
derivatives.

Two equations from P3 are locally equivalent to each other if and only if they have the same
functional dependencies among the differential invariants J1, L1, L2, and their invariant deriva-
tives.

Two equations from P4 are locally equivalent to each other if and only if they have the same
functional dependencies among the differential invariants M1, M2, M3, and their invariant
derivatives.

Every equation from the subclass P5 is locally equivalent to the equation uxx = ut + m̃ x−2 u
provided m̃ = −4/(3m5).
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The expression of the function I in terms of the coefficients of equations (7) and the neccessary
and sufficient condition for equivalence to the linear heat equation are found in [10]. Some
particular cases of invariants — so-called Laplace type invariants — are found in [9]. Numerous
examples of equations (7) from the first subclass are given in [10, 22].

5 Equivalence of nonlinear wave equations

We outline the solution of the contact equivalence problem for the following class of nonlinear
wave equations

ut = a(x, u) vx, vt = b(x, u)ux. (8)

As it is shown in [8], these equations are equivalent to the class of equations wtt = f(x,wx)wxx+
g(x,wx) studied in [7]. In [8], the symmetry classification for systems (8) is given in the finite-
dimensional cases. In [16], the moving coframe method is applied in both finite-dimensional and
infinite-dimensional cases. The results are gathered in the following theorem.

Theorem 3. Every system from the class of nonlinear wave equations (8) is equivalent under
a contact transformation to a system from one of the five invariant subclasses Q1, Q2, Q3, Q4,
and Q5:
Q1 consists of all systems (8) such that (b/a)x 6= 0, (a b)u 6= 0, and b−1 (b/a)x (b a)u 6= const;
Q2 consists of all systems ut = a(x, u) vx, vt = a(x, u)ux such that (ln a)xu 6= 0;
Q3 consists of all systems ut = a(u) vx, vt = a(u)ux such that

N1 = a
(
a2

uauu + aa2
uu − aauauuu

)
a−4

u 6= const;
Q4 consists of all systems ut = a(u) vx, vt = a(u)ux such that N1 = const;
Q5 consists of the system ut = vx, vt = ux.
For systems from subclasses Q1 and Q2 the symmetry groups are finite-dimensional, and their

dimensions are between 2 and 6.
For systems from subclasses Q3, Q4, and Q5 the symmetry pseudo-groups are infinite-di-

mensional. The equations from Q3 and Q4 are linearizable by a hodograph transformation.
Two equations from Q3 are equivalent under a contact transformation iff they have the same
functional dependencies among the differential invariants N1, N2 = 2N−1

1,u(auua
−1
u − aua

−1) +
(N−1

1,u)u, and N3 =
(
4a2N2

1,ua
−2
u − 1

)
N2 + 4N−1

1,u

(
a2N1,ua

−2
u

)
u
.

Two systems from the subclass Q4 are equivalent if and only if they have the same constant
value of the invariant N1.
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