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Applications of Cartan’s equivalence method to symmetries of differential equations are
considered. The examples include interrelations between the nonlinear acoustics equations,
and the solutions of equivalence problems for the classes of linear parabolic equations and
nonlinear wave equations.

Introduction

In this work we consider applications of Elie Cartan’s structure theory of Lie pseudo-groups to
symmetry groups of differential equations. This approach allows to solve equivalence problems
for classes of differential equations and to find contact transformations mapping equivalent equa-
tions into each other. Also, it allows to obtain all differential invariants of symmetry groups for
differential equations without analysis of over-determined systems of partial differential equa-
tions.

Definition 1. [20, 13] A pseudo-group G on a manifold M is a collection of local diffeomor-
phisms of M, which is closed under composition when defined, contains an identity and is closed
under inverse. A Lie pseudo-group is a pseudo-group whose diffeomorphisms are local analytic
solutions of an involutive system of partial differential equations.

Example 1. The pseudo-group of conformal transformations in R? consists of local mappings
(x,y) — (X,Y) satisfying the Cauchy - Riemann equations X, =Y,, X, = —Y;.

E. Cartan developed an approach to study Lie pseudo-groups by means of exterior differential
forms. He showed that for every Lie pseudo-group G acting on a manifold M there exists a finite-
dimensional Lie group H and a set of 1-forms = {w!,...,w*} on a direct product M x H such
that a transformation A : M — M belongs to G if and only if the forms () are invariant under
alift A: M x H— M x H. The forms € are called a moving coframe or tautological forms for
the pseudo-group G.

Example 1 (continued). For the pseudo-group of conformal transformations in R? we can take

the moving coframe w! = adx — bdy, w? = bdx + ady on R? x H, where H is a Lie group of

non-degenerate matrices of the form < Z _ab ) .

Taking differentials of the tautological forms, we obtain Cartan’s structure equations for the
pseudo-group

dw' = AL, n* A WF —i—Tfkwj A WP,

where Agk, as usual, are constants, the torsion coefficients T;k are invariants of the pseudo-
group, and N are linear combinations of Maurer-Cartan forms for the group H and the forms
Q). Cartan gave an explicit, practical test for involutivity of moving coframes. The test deals
with ranks of matrices constructed from Agk. For non-involutive coframes Cartan’s prolongation
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procedure allows us to obtain an involutive coframe after a finite number of extensions of the
group H.

Example 1 (continued). The structure equations for the pseudo-group of conformal transfor-
mations are dw' = m A w! — 72 Aw?, dw? = T Aw! + 7t Aw?, where 7 = (ada + bdb) (a® +
V)=l +tyw! +taw?, m = (—bda + adb) (a® + b*)7! — tyw! + t; w?, while t; and ty are free
parameters.

Full details of Cartan’s method can be found in [1, 2, 3, 17].

1 Contact transformations

Using Cartan’s method, we can find a moving coframe for the pseudo-group Cont(J'(€)) of
contact transformations on a bundle J!(€) of first-order jets of sections of £ = R” x R™ — R™.
In the local coordinates (z¢,u® p%), i € {1,..,n}, a € {1,..,m}, a contact transformation
A JYE) — JYHE), A (2hu,p?) — (T, u* PY), is defined by the requirement to map
the contact forms 9 = du® — p dz’ into linear combinations of the contact forms: A*)” =
du® — p; dz* = (§ (z,u,p) 9° for appropriate functions (g on JHE).
As it is shown in [14], we can take the following moving coframe for Cont(J!(€)):
0% = a§ (du” —pf da’), E'=ch0° +bidat, Y= f30°+ g0 = +af Bl dp. (1)

7

These forms are defined on J'(£) x H, where H is the Lie group of block lower triangular
matrices
s, S
cag b; ) 0 A
(f3 + g h)ay g5 by af B

and the parameters aﬁ, b, ciﬁ, fz%, and gj; obey the requirements det <ag) # 0, det (b;) %0,
b}c Bf = 6;-, and gi5 = gj;. It is easy to verify directly that A is a contact transformation
whenever (1) is invariant under an action of a lift of A on J!(£) x H. The structure equations
for the lifted coframe (1) have the form
_r _ ok .
dO* =GN 0° +EFASY, dE =W AEF 4TI A O, (2)
dXf = QIAS] — U AS +AGAO° + T AT
where ®%, Wt ny, i3> and Y7, are appropriate 1-forms on J 1(&) x H. From these equations it

follows that the moving coframe (1) is involutive. The structure equations (2) remain unchanged
if we make the following change of the forms g, o 11, A?B, and T%

F — @G + K, 07, W — W, + L, 5 + M 67, I — I + M E"+ N 0, (3)
k

Ay = Al + P, 07+ Qi 2 + K5 X7 — Mjj

T%'_)T103+Qzﬂ]@ +R2]k‘—‘ Lk Ek’

where K§ , L}'C], le«‘v’ N;E, P, f‘ﬁk, and Rf are arbitrary functions on JY(&) x H satisfying
the symmetry conditions KB,Y = /37, L}g] = L;k, Nf,e = Neﬂy, fév = Pwﬁ’ Qf‘ﬁk = Qgﬂi,
(6% — (6% — (6%
igk — likj = ik

Another approach to construct 1-forms characterizing contact transformations is presented

n [18].
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2 Symmetries of differential equations

Symmetry groups of differential equations are sub-groups of pseudo-groups of contact transfor-
mations. Therefore Cartan’s method of equivalence is applicable to find tautological forms for
these symmetry groups. We briefly outline this approach, [4, 14].

Every partial differential equation (PDE) can be transformed into an equivalent PDE of the
first order by adding appropriate new variables, [20, th 3.3.1], [6, § 17.4]. Therefore we take a
PDE R of the first order. R is a sub-bundle in J*(£). Let Sym(R) be the group of contact
symmetries for R. It consists of all the contact transformations on J!(€) mapping R to itself.
Let ¢t : R — J*(&) be an embedding. The tautological forms of Sym(R) are restrictions of the
lifted coframe (1) on R: % = 1*O%, ¢ = *E, and of = *X¢ (for brevity we identify the map
v X id: R x H— JYE) x H with ¢ : R — JY(&)). The forms 6%, ¢, and ¢ have some linear
dependencies, i.e., there exists a non-trivial set of functions S,, T}, and U} on R x H such that
Sa 0% +T; & + Ul 0 = 0. These functions are lifted invariants of Sym(R). Setting them equal
to appropriate constants allows us to specify some parameters ag, bé-, c%, fio[‘_}, and g7} of the

group H as functions of the coordinates on R and the other group parameters.

* Fyo 7

After these normalizations, some restrictions of the forms qbg = "PF, P = 1f Z, and
77% = L*H%, or some their linear combinations, become semi-basic, i.e., they do not include
the differentials of the parameters of H. From (3), we have the following statements: (i) if ¢3 is
semi-basic, then its coefficients at 0';7 and &7 are lifted invariants of Sym(R); (ii) if ¢ or Tr% are
semi-basic, then their coefficients at 0;7 are lifted invariants of Sym(R). Setting these invariants
equal to some constants, we get specifications of some more parameters of H as functions of the
coordinates on R and the other group parameters.

More lifted invariants can appear as essential torsion coefficients in the reduced structure
equations

A9 = G N0° +F nof,  dE =i A+l AOY,

dof = ¢S No] —pF Ao + A A0+ o AE
After normalizing these invariants and repeating the process, two outputs are possible. In the
first case, the reduced lifted coframe appears to be involutive. Then this coframe is the desired
set of tautological forms for Sym(R). In the second case, when the reduced lifted coframe does
not satisfy Cartan’s test, we should use the procedure of prolongation, [17, ch 12].

Another approach to find structure equations, but not tautological forms, for symmetry
groups of PDEs is given in [12, 13].

3 Interrelations between the Khokhlov-Zabolotskaya equation
and the short wave gas dynamics equation

Consider two equations: the Khokhlov - Zabolotskaya equation, [23, ch 3, § 5.3], [21], in the
potential form

Vg = Uy, Uy = Us + UUg, (4)
and the short wave gas dynamics equation, [6, § 23.4], [5],
Vg = Uy, vy =u + (u+ ) uy + ku. (5)

The moving coframe method gives the following structure equations for the symmetry pseudo-
group of (4):
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Aot =m A+ Nol + 2 N+ Ao,

3
d02:5771/\01+n3/\01+§1/\a%+§2/\a§+§3Aai+§3/\a§,

d€1:772/\§17
de? = —m A+ AE +m A - nES -0t N EL

1
d£3=§n1A£3+nzAf3—2n3A£1,

da%:m/\(ai—ka%)—7]2/\0%+2773/\a§+774A£3+775/\£2+776/\§1—01/\0%,
doy = =g Noy + 15 AEL,

1
do‘é:57]1/\O'é—772/\0'?1)+7]3/\0-%+774/\£1+775/\£3a

1
do? = A <U§+20f> —m2 Aot +ms A (o] +203) +muAE 15 AE e N E]

+7 AE =367 Aoy,
dm =2V A od,
d772:—3£1/\0%, (6)

1
dn3:§mAn3+§1Aa%+£3Aa%,

1
dig = m A+ ma A+ S Ana = 212 Ama+ 3713 A5 — B0 A o,

dns = ma N —2ma A,
dnpg =m NE + T NE + T3 AE +2m Ans +m Ang—2m2 Ame +4n3 A
+60%/\a%,

) 3
dip =m NE +my NE +m3 NE +ma NE + 2 Ama+ 5 Anr = 21 Mg + A A
+5n3Ang —ma AOY +3n5 ANO2 + 301 Aok — 90 Aas.

The structure of symmetry pseudo-group of the equation (5) depends on the value of the
parameter k. Particularly, if K = —2 or k = —%, the pseudo-group has exactly the same
structure equations (6) but with different 1-forms 0%, 62, ¢t €2, &3, o, 03, ok, o3, 1, ... , 07,
T, ... , m4. Therefore, in the cases k = —2 or k = —% there exist transformations mapping
equation (5) into equation (4).

For the other values of k the structure equations for the symmetry pseudo-group of equation
(5) have the form

del:771/\01—i—fl/\ai—i—fQ/\U%—i-fg/\U%,

3
d02:5771A01+n2A91+§1Aa%+§2m§+§3m}+£3m§,
d¢' =0,

d? =m A (=€) —mAE -0 N+ EENE,

1
dg® = SmAnE —2mNE + EENE,
dof =m A (0] +03) +2m Aoy +mAE +m A 0" Noy + EE Aoy,

doy =0,
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1
daé:5771/\U§+172/\U%+173/\§1—E{l/\agl)—i—Eﬁ?’/\a%,
3
da%:mAa;,+§mAa%+3n2Aa}+2n2Aa§+n3/\§2+n4/\§3+n5/\§1
1
+§91A§3—302A05+E53A(a}+o;),

dm =2¢" Aoy,

dnzz%mmz—$£1A£3+£1Aa§+£3mz%,

ClT]g:7T1/\€1+%7]1/\773—3E772/\0'%+ (;—2E2> 53/\05—305/\05,

dpu=mAE + TN +m A —Em Aoy +4dmpAng+2En Aoy — Eng A&
—EelAag—E2§2Aa§+§§3Aa§+3a}Aa§

3
dps =T ANE + T ANE +ma AN+ 2m A+ -mAns+Em Acs+5m A

2
2 1
—|—§772/\91—2E172/\(0%+0’%)—173/\91—E773A£2—2En4/\£3—§E91/\§3
4 2
+<9—E2> E Nl + (9—E2> ENaY+301 Aot — 605 N2,

where £ = % (9up+4k+5) (2k>+5 k+2)~1/2. This function is an invariant of the pseudo-group.
Since dE = 301, it follows that all the derived invariants are constants, and the classifying
manifold of the pseudo-group, i.e., the manifold parameterized by differential invariants, is a
line. Thus for every two equations (5) such that (k + 2) (k +27!) # 0 the classifying manifolds
of their symmetry pseudo-groups (locally) overlap. So these equations are equivalent under a
contact transformation, [17, th 15.12]. For example, we can take k = 0 for one of the equations.

The knowledge of invariant 1-forms defining the symmetry pseudo-groups allows us to find
the transformations explicitly.

Theorem 1. If k = —2, then the transformation

=t amen(31) (s+50) v ()
=l T=6exp|g LTy |, Y=explgt]y
3 6 3

U=e %t u—l—lar:—i 2 b = e?! v—1 u—gx +3 3
— AP\ 3 3T w_Y ) U7 VU T gtYT Y

maps equation (4) into equation (5) written in the tilded variables. In the case k = —% the
transformation between (4) and (5) has the form

- 2 1, - 1
=1, T =exp §t :L'+Ey , Yy=exp §t Y,

2, L1, 1 U B
CPA )\ T3 Y ) PO\ T T gt T3 )

The transformation

(BA+1)(3\+2)

Sl

U

(2X + 1) e2M

- 200+ 7 PTG F BN 1) (z+ 2y, g=<"y
e2>\t
U= 2(3;? ;321():» 2y (8(2A + Du — AN + 1)(4z — (BA +2)y?)) ,
b= (2)\ + 1)2e3>\t (24v B 12A(2A n 1)(u . (>\ + 1).’,12') _ AQ(A + 1)(5)\ + 2)93) ’

(3A + 1)3(3A + 2)2
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where A = 2 (((k+2)(k + 27 N2 4k — 1), maps equation (5) with k & {—2,—271} into this
equation with k =0 (written in tilded variables).

4 Equivalence of linear parabolic equations

The similar but more complicate analysis gives the solution of the contact equivalence problem
for the class of linear parabolic equations (LPEs), [11, V. 3, p. 492-523],[19],

Uge = T(t,x) ug + X (t, ) ug + U(t, z) . (7)

All these equations have infinite-dimensional symmetry pseudo-groups, whose structure depends
on the coefficients of equations. For simplicity of notation we consider the following normal form
Uge = ur + H (¢, x) u, while the results are valid for the original equations as well. The solution
of the equivalence problem in terms of the coefficients of equations (7) is given in [15].

Define the functions

2 _
1= _(Ha:xm)l/5a Jl = _g Ha:xmz (Hzx:r) 6/5’
1 — g—
Jo=5 1 (NaJiw = T Jige) =200 T80 + T Jig i) 17701,
1
J3 = B (I4J12J12,t - 4IIttJ12,z - 8—72J12,¢Hm + 2-[3J17:c<]127t + SIffo — 23 1 14t

=2 W Ly T + 210 0wy — 210 D1 Ja 1) 170012,
Ja= 20Ty J1z — AI°J3 g + AP Ty Hyy — P 1y + 21 1 T o Hy — AR 1) T0 00T,
Lo = (2I°Hy + P\ Hy + ITy — 2I7) 17207}, Ly = (Lop — 1) 17,

1
Ly =5 (2ULos + INL +412H, — 21 LoLy — ALoly) 177,

- 1 _
Mo =—-2My; 31 My +2)7%, M = 5 (T + 20 Hyg + TP H, = 217) 177,

My = Moy —Ip) 173, Ms == (2IMoy — 2I° MMy — 4Moly + IJy MG + 41°H,) 17°.

ol

Then we have

Theorem 2. The class of LPEs is divided into the five subclasses P1, Pa, ..., Ps invariant
under an action of the pseudo-group of contact transformations:

P1 consists of all LPEs such that I = 0;

Ps consists of all LPES such that I # 0 and Ji, # 0;

Ps consists of all LPEs such that I # 0, Ji, =0, and Ji; # 0;

Py consists of all LPEs such that I # 0, J; = m = const, and 3m My # —2;

Ps consists of all LPEs such that I # 0, J1 = m = const, and 3m My = —2.

Every equation from the subclass P1 is equivalent to the linear heat equation Uy, = uy.

Two equations from Po are locally equivalent to each other if and only if they have the same
functional dependencies among the differential invariants Jy, Jo, J3, Jq, and their invariant
derivatives.

Two equations from Ps are locally equivalent to each other if and only if they have the same
functional dependencies among the differential invariants Jv, L1, Lo, and their invariant deriva-
tives.

Two equations from Py are locally equivalent to each other if and only if they have the same
functional dependencies among the differential invariants My, My, Ms, and their invariant
derivatives.

Every equation from the subclass Ps is locally equivalent to the equation gy = us +mx 2 u
provided m = —4/(3m?).
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The expression of the function I in terms of the coefficients of equations (7) and the neccessary
and sufficient condition for equivalence to the linear heat equation are found in [10]. Some
particular cases of invariants — so-called Laplace type invariants — are found in [9]. Numerous
examples of equations (7) from the first subclass are given in [10, 22].

5 Equivalence of nonlinear wave equations

We outline the solution of the contact equivalence problem for the following class of nonlinear
wave equations

up = a(z,u) vy, v = bz, u) ug. (8)

As it is shown in [8], these equations are equivalent to the class of equations wy = f(z, wy) Wy +
g(x,w,) studied in [7]. In [8], the symmetry classification for systems (8) is given in the finite-
dimensional cases. In [16], the moving coframe method is applied in both finite-dimensional and
infinite-dimensional cases. The results are gathered in the following theorem.

Theorem 3. Every system from the class of nonlinear wave equations (8) is equivalent under
a contact transformation to a system from one of the five invariant subclasses Oy, Qo, Qs, Oy,
and Qs:

Q1 consists of all systems (8) such that (b/a); # 0, (ab)y # 0, and b= (b/a), (ba), # const;

Qo consists of all systems uy = a(x,u) vy, v = a(x,u) uy such that (Ina)g, # 0;

Qs consists of all systems u; = a(u) vy, vy = a(u) uy such that

Ni=a (aiauu +aa?, — aauauuu) a;4 # const;

Q4 consists of all systems u; = a(u) vy, vy = a(u) uy such that Ny = const;

Os consists of the system uy = vy, Uy = Uy.

For systems from subclasses Q1 and Qo the symmetry groups are finite-dimensional, and their
dimensions are between 2 and 6.

For systems from subclasses Qz, Q4, and Qs the symmetry pseudo-groups are infinite-di-
mensional. The equations from Qs and Q4 are linearizable by a hodograph transformation.
Two equations from Qs are equivalent under a contact transformation iff they have the same
functional dependencies among the differential invariants N1, No = QNEi(auuaqjl — auafl) +
(Niw)u> and N3 = (4a®NE a0, — 1) Ny + 4Ny, (a’ Ny uay?) -

Two systems from the subclass Q4 are equivalent if and only if they have the same constant
value of the invariant Ni.
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